Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Front Pharmacol ; 15: 1321405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560355

RESUMO

Backgroud: The co-administration of Chinese patent medicine with calcium channel blockers (CCBs) is a prevalent practice in China for treating essential hypertension (EH). However, robust evidence supporting the efficacy and safety of tailored combinations of different Chinese patent medicines with CCBs, according to individual patient conditions, is still limited. This study sought to elucidate the efficacy and safety of these combinations using a systematic review and network meta-analysis. Materials and methods: Relevant studies were sourced from established databases, incorporating randomized controlled trials published up to 1 February 2023. The ROB2 tool from the Cochrane Collaborative Network was employed to independently assess and cross-verify the quality of the included literature. A network meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 and PRISMA-Network Meta-Analyses (PRISMA-NMA) guidelines. A Bayesian network meta-analysis was utilized to gauge the efficacy and safety of distinct integrations of Chinese patent medicine and CCBs. Primary outcomes were interpreted using a paired fixed-effect meta-analysis. Publication bias was appraised through Egger's test and represented with funnel plots. All statistical analyses were executed within the R statistical framework. Results: Following rigorous selection, data extraction, and bias evaluation, 36 articles were incorporated. Tianma Gouteng Granule, when combined with CCBs, displayed superior efficacy in reducing systolic blood pressure (SBP). In terms of diastolic blood pressure (DBP) reduction, Songling Xuemaikang Capsule combined with CCBs emerged as the most effective. Regarding enhancement of antihypertensive effective rates, Qinggan Jiangya Capsule paired with CCBs demonstrated optimal results. For diminishing Traditional Chinese Medicine syndrome scores, the Qiangli Dingxuan Tablet and CCBs combination proved most beneficial. When aiming to reduce total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels, Tianma Gouteng Granule and CCBs showcased superior results. In contrast, the combination of Songling Xuemaikang Capsule and CCBs was more effective in reducing LDL-C, tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Conclusion: This study underscores variability in outcomes from combining Chinese patent medicine and CCBs for hypertension, emphasizing the importance of personalized medicinal combinations, especially Tianma Gouteng Granule and Songling Xuemaikang Capsule. The results offer robust evidence to inform clinical guidelines for essential hypertention and significantly aid clinician in seleting appropriate Chinese patent medicines for treatment.

3.
ACS Nano ; 18(15): 10582-10595, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564712

RESUMO

CO2 conversion with pure H2O into CH3OH and O2 driven by solar energy can supply fuels and life-essential substances for extraterrestrial exploration. However, the effective production of CH3OH is significantly challenging. Here we report an organozinc complex/MoS2 heterostructure linked by well-defined zinc-sulfur covalent bonds derived by the structural deformation and intensive coupling of dx2 - y2(Zn)-p(S) orbitals at the interface, resulting in distinctive charge transfer behaviors and excellent redox capabilities as revealed by experimental characterizations and first-principle calculations. The synthesis strategy is further generalized to more organometallic compounds, achieving various heterostructures for CO2 photoreduction. The optimal catalyst delivers a promising CH3OH yield of 2.57 mmol gcat-1 h-1 and selectivity of more than 99.5%. The reverse water gas shift mechanism is identified for methanol formation. Meanwhile, energy-unfavorable adsorption of methanol on MoS2, where the photogenerated holes accumulate, ensures the selective oxidation of water over methanol.

4.
Gut Liver ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38638101

RESUMO

Background/Aims: : The occurrence and development of circular RNAs in gastric cancer (GC) has attracted increasing attention. This study focused on investigating the biological role and molecular mechanism of circ_0043947 in GC. Methods: : The expression levels of circ_0043947, miR-384 and CAMP response element binding protein (CREB1) were determined by quantitative real-time polymerase chain reaction or Western blotting. Cell proliferation, migration, and invasion, the cell cycle and apoptosis were determined using a cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, colony formation assay, wound healing assay, transwell assay, and flow cytometry assay. The interaction between miR-384 and circ_0043947 or CREB1 was verified by dual-luciferase reporter assay and RNA pull-down assay. The in vivo assay was conducted using a xenograft mouse model. Results: : Circ_0043947 and CREB1 expression levels were significantly upregulated, whereas miR-384 expression levels were downregulated in GC tissues and cells. Functionally, knockdown of circ_0043947 inhibited cell proliferation, migration and invasion and induced G0/G1 phase arrest and apoptosis in vitro. Circ_0043947 could upregulate CREB1 expression by directly sponging miR-384. Rescue experiments showed that a miR-384 inhibitor significantly reversed the inhibitory effect of si-circ_0043947 on GC progression, and CREB1 overexpression significantly reversed the inhibitory effect of miR-384 mimics on the progression of GC cells. Furthermore, silencing of circ_0043947 inhibited tumor growth in vivo. Conclusions: : Circ_0043947 acted as an oncogenic factor in GC to mediate GC cell proliferation, migration, and invasion, the cell cycle and apoptosis by regulating the miR-384/CREB1 axis. Circ_0043947 may be a potential target for GC diagnosis and therapy.

5.
Front Chem ; 12: 1356458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496269

RESUMO

Background: With the increasing global prevalence of hypertension, a condition that can severely affect multiple organs, there is a growing need for effective treatment options. Uncaria rhynchophylla-Alisma plantago-aquatica L. (UR-AP) is a traditional drug pair used for treating hypertension based on the liver-kidney synergy concept. However, the detailed molecular mechanisms underlying its efficacy remain unclear. Methods: This study utilized an integrative approach combining network pharmacology, cluster analysis, and molecular docking to uncover the bioactive components and targets of UR-AP in the treatment of hypertension. Initially, we extracted data from public databases to identify these components and targets. A Protein-Protein Interaction (PPI) network was constructed, followed by enrichment analysis to pinpoint the bioactive components, core targets, and pivotal pathways. Cluster analysis helped in identifying key sub-networks and hypothesizing primary targets. Furthermore, molecular docking was conducted to validate the interaction between the core targets and major bioactive components, thus confirming their potential efficacy in hypertension treatment. Results: Network pharmacological analysis identified 58 bioactive compounds in UR-AP, notably quercetin, kaempferol, beta-sitosterol (from Uncaria rhynchophylla), and Alisol B, alisol B 23-acetate (from Alisma plantago-aquatica L.), as pivotal bioactives. We pinpointed 143 targets common to both UR-AP and hypertension, highlighting MAPK1, IL6, AKT1, VEGFA, EGFR, and TP53 as central targets involved in key pathways like diastolic and endothelial function, anti-atherosclerosis, AGE-RAGE signaling, and calcium signaling. Cluster analysis emphasized IL6, TNF, AKT1, and VEGFA's roles in atherosclerosis and inflammation. Molecular docking confirmed strong interactions between these targets and UR-AP's main bioactives, underscoring their therapeutic potential. Conclusion: This research delineates UR-AP's pharmacological profile in hypertension treatment, linking traditional medicine with modern pharmacology. It highlights key bioactive components and their interactions with principal targets, suggesting UR-AP's potential as a novel therapeutic option for hypertension. The evidence from molecular docking studies supports these interactions, indicating the relevance of these components in affecting hypertension pathways. However, the study acknowledges its limitations, including the reliance on in silico analyses and the need for in vivo validation. These findings pave the way for future clinical research, aiming to integrate traditional medicine insights with contemporary scientific approaches for developing innovative hypertension therapies.

6.
Research (Wash D C) ; 7: 0331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550779

RESUMO

The presence of endotoxemia is strongly linked to the development of endothelial dysfunction and disruption of myocardial microvascular reactivity. These factors play a crucial role in the progression of endotoxemic cardiomyopathy. Sepsis-related multiorgan damage involves the participation of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). However, whether DNA-PKcs contributes to endothelial dysfunction and myocardial microvascular dysfunction during endotoxemia remains unclear. Hence, we conducted experiments in mice subjected to lipopolysaccharide (LPS)-induced endotoxemic cardiomyopathy, as well as assays in primary mouse cardiac microvascular endothelial cells. Results showed that endothelial-cell-specific DNA-PKcs ablation markedly attenuated DNA damage, sustained microvessel perfusion, improved endothelial barrier function, inhibited capillary inflammation, restored endothelium-dependent vasodilation, and improved heart function under endotoxemic conditions. Furthermore, we show that upon LPS stress, DNA-PKcs recognizes a TQ motif in cofilin2 and consequently induces its phosphorylation at Thr25. Phosphorylated cofilin2 shows increased affinity for F-actin and promotes F-actin depolymerization, resulting into disruption of the endothelial barrier integrity, microvascular inflammation, and defective eNOS-dependent vasodilation. Accordingly, cofilin2-knockin mice expressing a phospho-defective (T25A) cofilin2 mutant protein showed improved endothelial integrity and myocardial microvascular function upon induction of endotoxemic cardiomyopathy. These findings highlight a novel mechanism whereby DNA-PKcs mediates cofilin2Thr25 phosphorylation and subsequent F-actin depolymerization to contribute to endotoxemia-related cardiac microvascular dysfunction.

7.
J Agric Food Chem ; 72(13): 7308-7317, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529564

RESUMO

Kauralexin A1 (KA1) is a key intermediate of the kauralexin A series metabolites of maize phytoalexins. However, their application is severely limited by their low abundance in maize. In this study, an efficient biosynthetic pathway was constructed to produce KA1 in Saccharomyces cerevisiae. Also, metabolic and enzyme engineering strategies were applied to construct the high-titer strains, such as chassis modification, screening synthases, the colocalization of enzymes, and multiple genomic integrations. First, the KA1 precursor ent-kaurene was synthesized using the efficient diterpene synthase GfCPS/KS from Fusarium fujikuroi, and optimized to reach 244.36 mg/L in shake flasks, which displayed a 200-fold increase compared to the initial strain. Then, the KA1 was produced under the catalysis of ZmCYP71Z18 from Zea mays and SmCPR1 from Salvia miltiorrhiza, and the titer was further improved by integrating the fusion protein into the genome. Finally, an ent-kaurene titer of 763.23 mg/L and a KA1 titer of 42.22 mg/L were achieved through a single-stage fed-batch fermentation in a 5 L bioreactor. This is the first report of the heterologous biosynthesis of maize diterpene phytoalexins in S. cerevisiae, which lays a foundation for further pathway reconstruction and biosynthesis of the kauralexin A series maize phytoalexins.


Assuntos
Diterpenos do Tipo Caurano , Diterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fitoalexinas , Diterpenos do Tipo Caurano/metabolismo , Diterpenos/metabolismo , Fermentação , Engenharia Metabólica
8.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474681

RESUMO

Z-scheme heterojunction Bi2WO6/g-C3N4 was obtained by a novel hydrothermal process; its photocatalysis-persulfate (PDS) activation for tetracycline (TC) removal was explored under solar light (SL). The structure and photoelectrochemistry behavior of fabricated samples were well characterized by FT-IR, XRD, XPS, SEM-EDS, UV-vis DRS, Mott-Schottky, PL, photocurrent response, EIS and BET. The critical experimental factors in TC decomposition were investigated, including the Bi2WO6 doping ratio, catalyst dosage, TC concentration, PDS dose, pH, co-existing ion and humic acid (HA). The optimum test conditions were as follows: 0.4 g/L Bi2WO6/g-C3N4 (BC-3), 20 mg/L TC, 20 mg/L PDS and pH = 6.49, and the maximum removal efficiency of TC was 98.0% in 60 min. The decomposition rate in BC-3/SL/PDS system (0.0446 min-1) was 3.05 times higher than that of the g-C3N4/SL/PDS system (0.0146 min-1), which might be caused by the high-efficiency electron transfer inside the Z-scheme Bi2WO6/g-C3N4 heterojunction. Furthermore, the photogenerated hole (h+), superoxide (O2•-), sulfate radical (SO4•-) and singlet oxygen (1O2) were confirmed as the key oxidation factors in the BC-3/SL/PDS system for TC degradation by a free radical quenching experiment. Particularly, BC-3 possessed a wide application potential in actual antibiotic wastewater treatment for its superior catalytic performance that emerged in the experiment of co-existing components.

9.
BMC Womens Health ; 24(1): 126, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365686

RESUMO

OBJECTIVE: To compare the application of sequential embryo transfer, cleavage embryo transfer, and blastocyst transfer combined with intrauterine perfusion in frozen-thawed embryo transfer cycles in patients with recurrent implantation failure to provide a reference for reproductive clinicians. METHODS: The 166 patients who underwent frozen-thawed embryo transfer due to recurrent implantation failure in the reproductive center from January 2021 to March 2022 were retrospectively analyzed. According to the different embryos transferred, they were divided into cleavage embryo transfer groups (72 cases in Group A), blastocyst transfer group (29 cases in Group B), and sequential transfer group (65 cases in Group C). All three groups were treated with intrauterine perfusion 5 days before embryo transfer. The general data and clinical pregnancy outcome indicators, such as embryo implantation rate, clinical pregnancy rate, ongoing pregnancy rate, live birth rate, twin rate, were compared among the three groups. RESULTS: The embryo implantation rate (53.1%), clinical pregnancy rate (76.9%), ongoing pregnancy rate (67.7%) and live birth rate(66.15%) in the sequential transfer group were significantly higher than those in the other two groups (P < 0.05), and the ectopic pregnancy rate was lower in the sequential transfer group. CONCLUSION: Sequential transfer combined with intrauterine perfusion partially improves clinical pregnancy outcomes and reduces the risk of ectopic pregnancy in frozen embryo cycle transfers in patients with recurrent implantation failure, which may be a favourable transfer reference strategy for patients with recurrent implantation failure.


Assuntos
Resultado da Gravidez , Gravidez Ectópica , Feminino , Gravidez , Humanos , Estudos Retrospectivos , Transferência Embrionária , Implantação do Embrião , Taxa de Gravidez , Gravidez Ectópica/etiologia , Perfusão , Fertilização In Vitro
10.
Theranostics ; 14(4): 1561-1582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389837

RESUMO

Rationale: The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) promotes pathological mitochondrial fission during septic acute kidney injury. The mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) is a mitochondria-derived peptide that exhibits anti-inflammatory properties during cardiovascular illnesses. We explored whether endotoxemia-induced myocardial microvascular injury involved DNA-PKcs and MOTS-c dysregulation. Methods: To induce endotoxemia in vivo, endothelial cell-specific DNA-PKcs-knockout mice were injected intraperitoneally with a single dose of lipopolysaccharide (10 mg/kg) and evaluated after 72 h. Results: Lipopolysaccharide exposure increased DNA-PKcs activity in cardiac microvascular endothelial cells, while pharmacological inhibition or endothelial cell-specific genetic ablation of DNA-PKcs reduced lipopolysaccharide-induced myocardial microvascular dysfunction. Proteomic analyses showed that endothelial DNA-PKcs ablation primarily altered mitochondrial protein expression. Verification assays confirmed that DNA-PKcs drastically repressed MOTS-c transcription by inducing mtDNA breaks via pathological mitochondrial fission. Inhibiting MOTS-c neutralized the endothelial protective effects of DNA-PKcs ablation, whereas MOTS-c supplementation enhanced endothelial barrier function and myocardial microvascular homeostasis under lipopolysaccharide stress. In molecular studies, MOTS-c downregulation disinhibited c-Jun N-terminal kinase (JNK), allowing JNK to phosphorylate profilin-S173. Inhibiting JNK or transfecting cells with a profilin phosphorylation-defective mutant improved endothelial barrier function by preventing F-actin depolymerization and lamellipodial degradation following lipopolysaccharide treatment. Conclusions: DNA-PKcs inactivation during endotoxemia could be a worthwhile therapeutic strategy to restore MOTS-c expression, prevent JNK-induced profilin phosphorylation, improve F-actin polymerization, and enhance lamellipodial integrity, ultimately ameliorating endothelial barrier function and reducing myocardial microvascular injury.


Assuntos
Endotoxemia , Traumatismos Cardíacos , Animais , Camundongos , Actinas , Domínio Catalítico , DNA , Proteína Quinase Ativada por DNA , Células Endoteliais , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases , Profilinas , Proteômica , Pseudópodes
11.
Pacing Clin Electrophysiol ; 47(4): 518-524, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38407374

RESUMO

BACKGROUND: Left bundle branch block (LBBB) and atrial fibrillation (AF) are commonly coexisting conditions. The impact of LBBB on catheter ablation of AF has not been well determined. This study aims to explore the long-term outcomes of patients with AF and LBBB after catheter ablation. METHODS: Forty-two patients with LBBB of 11,752 patients who underwent catheter ablation of AF from 2011 to 2020 were enrolled as LBBB group. After propensity score matching in a 1:4 ratio, 168 AF patients without LBBB were enrolled as non-LBBB group. Late recurrence and a composite endpoint of stroke, all-cause mortality, and cardiovascular hospitalization were compared between the two groups. RESULTS: Late recurrence rate was significantly higher in the LBBB group than that in the non-LBBB group (54.8% vs. 31.5%, p = .034). Multivariate analysis showed that LBBB was an independent risk factor for late recurrence after catheter ablation of AF (hazard ratio [HR] 2.19, 95% confidence interval [CI] 1.09-4.40, p = .031). LBBB group was also associated with a significantly higher incidence of the composite endpoint (21.4% vs. 6.5%, HR 3.98, 95% CI 1.64-9.64, p = .002). CONCLUSIONS: LBBB was associated with a higher risk for late recurrence and a higher incidence of composite endpoint in the patients underwent catheter ablation.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Acidente Vascular Cerebral , Humanos , Bloqueio de Ramo/etiologia , Fatores de Risco , Acidente Vascular Cerebral/etiologia , Ablação por Cateter/efeitos adversos , Resultado do Tratamento , Recidiva
12.
Fish Shellfish Immunol ; 147: 109435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336144

RESUMO

Pseudohemocyanin is a member of the hemocyanin superfamily, but little research is available on its function in immunology. In this study, a Portunus trituberculatus pseudohemocyanin gene, named PtPhc1, was obtained by gene cloning. The PtPhc1 cDNA was 2312 bp in length, encoding 684 amino acids while exhibiting a characteristic hemocyanin structural domain. Tissue expression analysis revealed ubiquitous expression of PtPhc1 across all tissues, with the highest level of expression observed in the hepatopancreas. The expression pattern of PtPhc1 in response to Vibrio parahaemolyticus infection was clarified using RT-qPCR in swimming crabs. Notably, the expression peaked at 24 h, and increased 1435-fold compared to the control group in the hepatopancreas. While the expression level reached the maximum value at 72 h, which was 3.24 times higher than that of the control group in hemocytes. Remarkably, the reduction in PtPhc1 expression led to a noteworthy 30% increase in the mortality rate of P. trituberculatus when exposed to V. parahaemolyticus. In addition, in vitro bacterial inhibition assays exhibited a dose-dependent suppression of bacterial proliferation by recombinant PtPhc1 protein, with a notable inhibition rate of 48.33% against V. parahaemolyticus at a concentration of 0.03 mg/mL. To the best of our knowledge, the results establish the function of pseudohaemocyanin in immunity for the first time, contributing to a deeper comprehension of innate immune regulatory mechanisms in aquatic organisms and advancing strategies for disease-resistant breeding.


Assuntos
Braquiúros , Vibrio parahaemolyticus , Animais , Sequência de Bases , Sequência de Aminoácidos , Vibrio parahaemolyticus/genética , Hemocianinas/genética , Natação , Filogenia
13.
J Transl Med ; 22(1): 46, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212795

RESUMO

BACKGROUND: Ovarian cancer (OC) is a malignant neoplasm that displays increased vascularization. Angiopoietin-like 4 (ANGPTL4) is a secreted glycoprotein that functions as a regulator of cell metabolism and angiogenesis and plays a critical role in tumorigenesis. However, the precise role of ANGPTL4 in the OC microenvironment, particularly its involvement in angiogenesis, has not been fully elucidated. METHODS: The expression of ANGPTL4 was confirmed by bioinformatics and IHC in OC. The potential molecular mechanism of ANGPTL4 was measured by RNA-sequence. We used a series of molecular biological experiments to measure the ANGPTL4-JAK2-STAT3 and ANGPTL4-ESM1 axis in OC progression, including MTT, EdU, wound healing, transwell, xenograft model, oil red O staining, chick chorioallantoic membrane assay and zebrafish model. Moreover, the molecular mechanisms were confirmed by Western blot, Co-IP and molecular docking. RESULTS: Our study demonstrates a significant upregulation of ANGPTL4 in OC specimens and its strong association with unfavorable prognosis. RNA-seq analysis affirms that ANGPTL4 facilitates OC development by driving JAK2-STAT3 signaling pathway activation. The interaction between ANGPTL4 and ESM1 promotes ANGPTL4 binding to lipoprotein lipase (LPL), thereby resulting in reprogrammed lipid metabolism and the promotion of OC cell proliferation, migration, and invasion. In the OC microenvironment, ESM1 may interfere with the binding of ANGPTL4 to integrin and vascular-endothelial cadherin (VE-Cad), which leads to stabilization of vascular integrity and ultimately promotes angiogenesis. CONCLUSION: Our findings underscore that ANGPTL4 promotes OC development via JAK signaling and induces angiogenesis in the tumor microenvironment through its interaction with ESM1.


Assuntos
Cistadenocarcinoma Seroso , Janus Quinase 2 , Neoplasias Ovarianas , Fator de Transcrição STAT3 , Animais , Feminino , Humanos , Microambiente Tumoral , Simulação de Acoplamento Molecular , 60489 , Peixe-Zebra/metabolismo , Carcinogênese , Proliferação de Células , Carcinoma Epitelial do Ovário , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Proteína 4 Semelhante a Angiopoietina/genética , Proteínas de Neoplasias , Proteoglicanas
14.
Cell Mol Biol Lett ; 29(1): 21, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291374

RESUMO

BACKGROUND: Septic cardiomyopathy (SCM), a common cardiovascular comorbidity of sepsis, has emerged among the leading causes of death in patients with sepsis. SCM's pathogenesis is strongly affected by mitochondrial metabolic dysregulation and immune infiltration disorder. However, the specific mechanisms and their intricate interactions in SCM remain unclear. This study employed bioinformatics analysis and drug discovery approaches to identify the regulatory molecules, distinct functions, and underlying interactions of mitochondrial metabolism and immune microenvironment, along with potential interventional strategies in SCM. METHODS: GSE79962, GSE171546, and GSE167363 datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and module genes were identified using Limma and Weighted Correlation Network Analysis (WGCNA), followed by functional enrichment analysis. Machine learning algorithms, including support vector machine-recursive feature elimination (SVM-RFE), least absolute shrinkage and selection operator (LASSO) regression, and random forest, were used to screen mitochondria-related hub genes for early diagnosis of SCM. Subsequently, a nomogram was developed based on six hub genes. The immunological landscape was evaluated by single-sample gene set enrichment analysis (ssGSEA). We also explored the expression pattern of hub genes and distribution of mitochondria/inflammation-related pathways in UMAP plots of single-cell dataset. Potential drugs were explored using the Drug Signatures Database (DSigDB). In vivo and in vitro experiments were performed to validate the pathogenetic mechanism of SCM and the therapeutic efficacy of candidate drugs. RESULTS: Six hub mitochondria-related DEGs [MitoDEGs; translocase of inner mitochondrial membrane domain-containing 1 (TIMMDC1), mitochondrial ribosomal protein S31 (MRPS31), F-box only protein 7 (FBXO7), phosphatidylglycerophosphate synthase 1 (PGS1), LYR motif containing 7 (LYRM7), and mitochondrial chaperone BCS1 (BCS1L)] were identified. The diagnostic nomogram model based on the six hub genes demonstrated high reliability and validity in both the training and validation sets. The immunological microenvironment differed between SCM and control groups. The Spearman correlation analysis revealed that hub MitoDEGs were significantly associated with the infiltration of immune cells. Upregulated hub genes showed remarkably high expression in the naive/memory B cell, CD14+ monocyte, and plasma cell subgroup, evidenced by the feature plot. The distribution of mitochondria/inflammation-related pathways varied across subgroups among control and SCM individuals. Metformin was predicted to be the most promising drug with the highest combined score. Its efficacy in restoring mitochondrial function and suppressing inflammatory responses has also been validated. CONCLUSIONS: This study presents a comprehensive mitochondrial metabolism and immune infiltration landscape in SCM, providing a potential novel direction for the pathogenesis and medical intervention of SCM.


Assuntos
Cardiomiopatias , Sepse , Humanos , Reprodutibilidade dos Testes , Mitocôndrias , Cardiomiopatias/genética , DNA Mitocondrial , Biologia Computacional , Inflamação , Sepse/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , ATPases Associadas a Diversas Atividades Celulares , Complexo III da Cadeia de Transporte de Elétrons , Chaperonas Moleculares , Proteínas Mitocondriais
15.
Technol Cancer Res Treat ; 23: 15330338241227291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38258381

RESUMO

Purpose: Magnetic resonance (MR)-guided radiotherapy enables visualization of static anatomy, capturing tumor motion, and extracting quantitative image features for treatment verification and outcome monitoring. However, magnetic fields in online MR imaging (MRI) require efforts to ensure accurate dose measurements. This study aimed to assess the dosimetric impact of a 1.5 T magnetic field in esophageal cancer radiotherapy using MR-linac, exploring treatment adaptation potential and personalized medicine benefits. Methods: A prospective cohort study enrolled 100 esophageal squamous cell carcinoma patients undergoing 4DCT and 3DCT scans before radiotherapy. The heart was contoured on 3DCT, 4DCT end expiration (EE), and 4DCT end inhalation (EI) images by the same radiation oncologist. Reference RT plans were designed on 3DCT, with adjustments for different phases generating 5 plan types per patient. Variations in dose-volume parameters for organs at risk and the target area among different plans were compared using Monaco 5.40.04. Results: Slight dose distortions at air-tissue interfaces were observed in the magnetic field's presence. Dose at air-tissue interfaces (chest wall and heart wall) was slightly higher in some patients (3.0% tissue increased by 4.3 Gy on average) compared to nonmagnetic conditions. Average clinical target volume coverage V100 dropped from 99% to 95% compared to reference plans (planEI and planEE). Dose-volume histogram variation between the original plan and reference plans was within 2.3%. Superior-inferior (SI) direction displacement was significantly larger than lateral and anterior-posterior directions (P < .05). Conclusion: Significant SI direction shift in lower esophageal cancerous regions during RT indicates the magnetic field's dosimetric impact, including the electron return effect at tissue-air boundaries. Changes in OAR dose could serve as valuable indicators of organ impairment and target dose alterations, especially for cardiac tissue when using the 1.5 T linac method. Reoptimizing the plan with the magnetic field enhances the feasibility of achieving a clinically acceptable treatment plan for esophageal cancer patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Radioterapia (Especialidade) , Humanos , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/radioterapia , Estudos Prospectivos , Campos Magnéticos
16.
J Cell Physiol ; 239(1): 79-96, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37942585

RESUMO

Radiation-induced heart damage caused by low-dose X-rays has a significant impact on tumour patients' prognosis, with cardiac hypertrophy being the most severe noncarcinogenic adverse effect. Our previous study demonstrated that mitophagy activation promoted cardiac hypertrophy, but the underlying mechanisms remained unclear. In the present study, PARL-IN-1 enhanced excessive hypertrophy of cardiomyocytes and exacerbated mitochondrial damage. Isobaric tags for relative and absolute quantification-based quantitative proteomics identified NDP52 as a crucial target mediating cardiac hypertrophy induced by low-dose X-rays. SUMOylation proteomics revealed that the SUMO E3 ligase MUL1 facilitated NDP52 SUMOylation through SUMO2. Co-IP coupled with LC-MS/MS identified a critical lysine residue at position 262 of NDP52 as the key site for SUMO2-mediated SUMOylation of NDP52. The point mutation plasmid NDP52K262R inhibited mitophagy under MUL1 overexpression, as evidenced by inhibition of LC3 interaction with NDP52, PINK1 and LAMP2A. A mitochondrial dissociation study revealed that NDP52K262R inhibited PINK1 targeting to endosomes early endosomal marker (EEA1), late/lysosome endosomal marker (LAMP2A) and recycling endosomal marker (RAB11), and laser confocal microscopy confirmed that NDP52K262R impaired the recruitment of mitochondria to the autophagic pathway through EEA1/RAB11 and ATG3, ATG5, ATG16L1 and STX17, but did not affect mitochondrial delivery to lysosomes via LAMP2A for degradation. In conclusion, our findings suggest that MUL1-mediated SUMOylation of NDP52 plays a crucial role in regulating mitophagy in the context of low-dose X-ray-induced cardiac hypertrophy. Two hundred sixty-second lysine of NDP52 is identified as a key SUMOylation site for low-dose X-ray promoting mitophagy activation and cardiac hypertrophy. Collectively, this study provides novel implications for the development of therapeutic strategies aimed at preventing the progression of cardiac hypertrophy induced by low-dose X-rays.


Assuntos
Mitofagia , Proteínas Nucleares , Proteínas Quinases , Humanos , Cardiomegalia/genética , Cromatografia Líquida , Lisina/metabolismo , Mitofagia/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Espectrometria de Massas em Tandem , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Raios X , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
17.
Emerg Microbes Infect ; 13(1): 2284286, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37982370

RESUMO

The persistence of HBV covalently closed circular DNA (cccDNA) and HBV integration into the host genome in infected hepatocytes pose significant challenges to the cure of chronic HBV infection. Although CRISPR/Cas9-mediated genome editing shows promise for targeted clearance of viral genomes, a safe and efficient delivery method is currently lacking. Here, we developed a novel approach by combining light-induced heterodimerization and protein acylation to enhance the loading efficiency of Cas9 protein into extracellular vesicles (EVs). Moreover, vesicular stomatitis virus-glycoprotein (VSV-G) was incorporated onto the EVs membrane, significantly facilitating the endosomal escape of Cas9 protein and increasing its gene editing activity in recipient cells. Our results demonstrated that engineered EVs containing Cas9/gRNA and VSV-G can effectively reduce viral antigens and cccDNA levels in the HBV-replicating and infected cell models. Notably, we also confirmed the antiviral activity and high safety of the engineered EVs in the HBV-replicating mouse model generated by hydrodynamic injection and the HBV transgenic mouse model. In conclusion, engineered EVs could successfully mediate functional CRISPR/Cas9 delivery both in vitro and in vivo, leading to the clearance of episomal cccDNA and integrated viral DNA fragments, and providing a novel therapeutic approach for curing chronic HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Animais , Camundongos , Vírus da Hepatite B/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/farmacologia , DNA Circular/genética , DNA Circular/metabolismo , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , DNA Viral/genética , DNA Viral/metabolismo , Hepatite B/genética , Replicação Viral
18.
Mater Horiz ; 11(1): 196-206, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37807887

RESUMO

Modulating the segmental order in the morphology of conjugated polymers is widely recognized as a crucial factor for achieving optimal electronic properties and mechanical deformability. However, it is worth noting that the segmental order is typically associated with the crystallization process, which can result in rigid and brittle long-range ordered crystalline domains. To precisely control the morphology, a comprehensive understanding of how highly anisotropic conjugated polymers form segmentally ordered structures with ongoing crystallization is essential, yet currently elusive. To fill this knowledge gap, we developed a novel approach with a combination of stage-type fast scanning calorimetry and micro-Raman spectroscopy to capture the series of specimens with a continuum in the polymer percent crystallinity and detect the segmental order in real-time. Through the investigation of conjugated polymers with different backbones and side-chain structures, we observed a generally existing phenomenon that the degree of segmental order saturates before the maximum crystallinity is achieved. This disparity allows the conjugated polymers to achieve good charge carrier mobility while retaining good segmental dynamic mobility through the tailored treatment. Moreover, the crystallization temperature to obtain optimal segmental order can be predicted based on Tg and Tm of conjugated polymers. This in-depth characterization study provides fundamental insights into the evolution of segmental order during crystallization, which can aid in designing and controlling the optoelectronic and mechanical properties of conjugated polymers.

19.
J Cosmet Dermatol ; 23(4): 1217-1223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38131127

RESUMO

BACKGROUND: Vascular occlusion induced by hyaluronic acid injections is rare, but can lead to severe adverse events, including necrosis, blindness, and cerebral infarction. OBJECTIVE: This study aims to explore methods of reducing the risk of complications such as embolism induced by hyaluronic acid injection, and to study the impact of comprehensive systematic treatment on the prognosis of patients with hyaluronic acid embolism. METHODS: The clinical data of three female patients with vascular occlusion due to hyaluronic acid injection was analyzed. Their median age was 26 years, with symptoms presenting 1-6 h postinjection. Hospital stays averaged 6 days. Two patients had ptosis, diplopia, and severe pain after injection of eyebrows. The other, who had a nose enhancement, experienced facial skin color changes and intense pain. RESULTS: Two patients received comprehensive, systematic treatment based on injectable hyaluronidase. One patient self-discharged after receiving injectable hyaluronidase, antispasmodic, and vasodilator treatment on the night of embolism and returned to the hospital 3 days later with worsening embolism symptoms and received symptomatic treatment again. Two patients who received comprehensive, systematic treatment based on injectable hyaluronidase showed significant improvement, while the patient who did not undergo systematic treatment left scars on the face. CONCLUSION: Vascular occlusion caused by hyaluronic acid facial filling is a severe adverse event, and timely, comprehensive, systematic treatment can effectively improve irreversible damage caused by thrombosis, and even cure it.


Assuntos
Técnicas Cosméticas , Preenchedores Dérmicos , Embolia , Humanos , Feminino , Adulto , Ácido Hialurônico , Hialuronoglucosaminidase , Embolia/etiologia , Embolia/prevenção & controle , Dor/etiologia , Técnicas Cosméticas/efeitos adversos
20.
PLoS One ; 18(12): e0295451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096145

RESUMO

Postmenopausal osteoporosis (PMOP) is a prevalent form of primary osteoporosis, affecting over 40% of postmenopausal women. Previous studies have suggested a potential association between single nucleotide polymorphisms (SNPs) in glucagon-like peptide-1 receptor (GLP-1R) and PMOP in postmenopausal Chinese women. However, available evidence remains inconclusive. Therefore, this study aimed to investigate the possible association between GLP-1R SNPs and PMOP in Han Chinese women. Thus, we conducted a case-control study with 152 postmenopausal Han Chinese women aged 45-80 years, including 76 women with osteoporosis and 76 without osteoporosis. Seven SNPs of the GLP-1R were obtained from the National Center of Biotechnology Information and Genome Variation Server. We employed three genetic models to assess the association between GLP-1R genetic variants and osteoporosis in postmenopausal women, while also investigating SNP-SNP and SNP-environment interactions with the risk of PMOP. In this study, we selected seven GLP-1R SNPs (rs1042044, rs2268641, rs10305492, rs6923761, rs1126476, rs2268657, and rs2295006). Of these, the minor allele A of rs1042044 was significantly associated with an increased risk of PMOP. Genetic model analysis revealed that individuals carrying the A allele of rs1042044 had a higher risk of developing osteoporosis in the dominant model (P = 0.029, OR = 2.76, 95%CI: 1.09-6.99). Furthermore, a multiplicative interaction was found between rs1042044 and rs2268641 that was associated with osteoporosis in postmenopausal women (Pinteraction = 0.034). Importantly, this association remained independent of age, menopausal duration, family history of osteoporosis, and body mass index. However, no significant relationship was observed between GLP-1R haplotypes and PMOP. In conclusion, this study suggests a close association between the A allele on the GLP-1R rs1042044 and an increased risk of PMOP. Furthermore, this risk was significantly augmented by an SNP-SNP interaction with rs2268641. These results provide new scientific insights into the development of personalized prevention strategies and treatment approaches for PMOP.


Assuntos
Predisposição Genética para Doença , Osteoporose Pós-Menopausa , Feminino , Humanos , Estudos de Casos e Controles , China/epidemiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Osteoporose Pós-Menopausa/genética , Polimorfismo de Nucleotídeo Único , Pós-Menopausa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...